With 10 locations throughout NWA, we're always in your neighborhood. Have your prescription delivered fast & free! Visit us, order online or call: 1.888.237.6261

The Complete Male Hormone Panel

Male Hormones – THE COMPLETE HORMONE PROFILE

TESTOSTERONE is the primary indicator of male hypogonadism and andropause. Many things can contribute to low testosterone levels, including high cortisol levels and high estrogen levels, as described above. Testosterone production in the testes is controlled by the hypothalamic-pituitary-testicular axis, and so dysfunctions of the hypothalamus or pituitary can affect levels, as well as the negative feedback effect of estradiol on LH levels to suppress testosterone production.  Age Dependent Reference Range 240-1200 ng/dL (total)

 ESTRADIOL is tested because too much of it, relative to testosterone levels, suppresses testosterone receptors in target tissues and eventually leads to feminizing effects in men, such as breast enlargement. As men age, this shifts to a higher estradiol/testosterone ratio. Even if testosterone levels are normal, symptoms can indicate a functional testosterone deficiency because of the effects of higher than normal estradiol levels. Weight gain, whether or not this results from low testosterone, results in increased production of aromatase in fat cells, which converts testosterone to estradiol. Rising estradiol levels also cause the liver to produce more SHBG, which has a greater affinity for testosterone than estradiol. This acts to suppress further the amount of circulating free testosterone. Estradiol also decreases luteinizing hormone (LH) production by negative feedback on the pituitary gland, which in turn acts to decrease testicular testosterone production. High estradiol levels can be controlled by weight reduction to decrease the amount of aromatase-producing adipose tissue. There are nutritional and pharmaceutical approaches to aromatase inhibition.     Reference Range 10-40 pg/mL

PSA is a measure of prostate health and high levels can indicate the presence of BPH or advancing prostate cancer. As prostate cells start to become crowded, they produce PSA, which acts to suppress angiogenesis and therefore reduce the blood supply to the surrounding tissue to prevent it from further growth. High levels are therefore seen only as a result of growth that is fairly rapid. It is important to test PSA levels prior to starting testosterone therapy, as a sharp increase in PSA can indicate prostate problems.  Reference Range 0.5-4.0 ng/mL

DHEA is a precursor for the production of estrogens and testosterone, and is therefore normally present in greater quantities than all the other steroid hormones. It is mostly found in the circulation in its conjugated form, DHEA sulfate (DHEA-S). Its production, which occurs in the adrenal glands, declines gradually with age. Like cortisol, it is involved with immune function and a balance between the two is essential. Low DHEA can result in reduced libido and general malaise.    Age Dependent Reference Range 35-325  mcg/dL

CORTISOL is an indicator of adrenal function and exposure to stressors. Under normal circumstances, adrenal cortisol production shows a diurnal variation and is highest early in the morning, soon after waking, falling to lower levels in the evening. Normal cortisol production shows a healthy ability to respond to stress. Low cortisol levels can indicate adrenal fatigue (a reduced ability to respond to stressors), and can leave the body more vulnerable to poor blood sugar regulation and immune system dysfunction. Chronically high cortisol is a consequence of high, constant exposure to stressors, and this has serious implications for long-term health, including an increased risk of cancer, osteoporosis, and possibly Alzheimer’s disease.  AM Reference Range 7-25mcg/dL       PM Reference Range 2-14mcg/dL

Free T4, free T3, TSH, and TPOab tests can indicate the presence of an imbalance in thyroid function, which can cause a wide variety of symptoms, including feeling cold all the time, low stamina, fatigue (particularly in the evening), depression, low sex drive, weight gain, and high cholesterol.

SHBG binds and transports both testosterone and estrogens in the bloodstream, and it therefore regulates the relative amounts of free and bound hormone and consequently their bioavailability to target tissues. SHBG is a protein produced by the liver in response to exposure to any type of estrogen. Testosterone binds about three times more tightly to SHBG than does estradiol, so this increase in SHBG as a result of estrogen exposure causes the relative proportion of bioavailable testosterone to estradiol to decrease even further, exacerbating the symptoms of testosterone deficiency. As men age, gain weight, and their estrogen levels increase, SHBG also rises, decreasing bioavailable testosterone. Measuring SHBG in blood provides an indication of the overall exposure to estrogens, as well as the bioavailable (free) fraction of testosterone.    Reference Range 10-57 nmol/L

Referenced from ZRT labs “Male Hormone Profiles: Provider Data Sheet”

Referenced Serum Lab Ranges from MayoClinic